An example of weakly amenable and character amenable operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Amenable Groups

In the present paper we construct the first examples of finitely generated non–amenable groups whose left regular representations are not uniformly isolated from the trivial representation.

متن کامل

Multiplier on Character Amenable Banach Algebras

In this paper we prove that for a commutative character amenable Banach algebra A, if T : A → A is a multiplier then T has closed range if and only if T = BP = PB, where B ∈ M(A) is invertible and p ∈ M(A) is idempotent. By this result we characterize each multiplier with closed range on such Banach algebra (proposition 3.7), and so we get a necessary condition for character amenability of alge...

متن کامل

Characterizations of amenable hypergroups

Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.

متن کامل

Amenable Groups

Throughout we let Γ be a discrete group. For f : Γ → C and each s ∈ Γ we define the left translation action by (s.f)(t) = f(s−1t). Definition 1.1. A group Γ is amenable is there exists a state μ on l∞(Γ) which is invariant under the left translation action: for all s ∈ Γ and f ∈ l∞(Γ), μ(s.f) = μ(f). Example 1.2. Finite groups are amenable: take the state which sends χ{s} to 1 |Γ| for each s ∈ ...

متن کامل

An amenable, radical Banach algebra

We give an example of an amenable, radical Banach algebra, relying on results from non-abelian harmonic analysis due to H. Leptin, D. Poguntke and J. Boidol. Let A be a Banach algebra, and let E be a Banach A-module. A bounded linear map D : A → E is called a a derivation if D(ab) = a.Db+ (Da).b (a, b ∈ A). A derivation D : A → E is said to be inner if Da = x.a− a.x (a ∈ A) for some x ∈ E. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2011

ISSN: 0019-2082

DOI: 10.1215/ijm/1373636690